Atypical group 1 neuraminidase pH1N1-N1 bound to a group 1 inhibitor
نویسندگان
چکیده
منابع مشابه
Clifford-Fischer theory applied to a group of the form $2_{-}^{1+6}{:}((3^{1+2}{:}8){:}2)$
In our paper [A. B. M. Basheer and J. Moori, On a group of the form $2^{10}{:}(U_{5}(2){:}2)$] we calculated the inertia factors, Fischer matrices and the ordinary character table of the split extension $ 2^{10}{:}(U_{5}(2){:}2)$ by means of Clifford-Fischer Theory. The second inertia factor group of $2^{10}{:}(U_{5}(2){:}2)$ is a group of the form $2_{-}^{1+6}{:}((3^{1+2}{...
متن کاملGroup ${1, -1, i, -i}$ Cordial Labeling of sum of $C_n$ and $K_m$ for some $m$
Let G be a (p,q) graph and A be a group. We denote the order of an element $a in A $ by $o(a).$ Let $ f:V(G)rightarrow A$ be a function. For each edge $uv$ assign the label 1 if $(o(f(u)),o(f(v)))=1 $or $0$ otherwise. $f$ is called a group A Cordial labeling if $|v_f(a)-v_f(b)| leq 1$ and $|e_f(0)- e_f(1)|leq 1$, where $v_f(x)$ and $e_f(n)$ respectively denote the number of vertices labelled w...
متن کاملclifford-fischer theory applied to a group of the form $2_{-}^{1+6}{:}((3^{1+2}{:}8){:}2)$
in our paper [a. b. m. basheer and j. moori, on a group of the form $2^{10}{:}(u_{5}(2){:}2)$] we calculated the inertia factors, fischer matrices and the ordinary character table of the split extension $ 2^{10}{:}(u_{5}(2){:}2)$ by means of clifford-fischer theory. the second inertia factor group of $2^{10}{:}(u_{5}(2){:}2)$ is a group of the form $2_{-}^{1+6}{:}((3^{1+2}{...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Protein & Cell
سال: 2015
ISSN: 1674-800X,1674-8018
DOI: 10.1007/s13238-015-0197-6